Touchard-Riordan formulas, T -fractions, and Jacobi’s triple product identity
نویسندگان
چکیده
Abstract. We give a combinatorial proof of a Touchard-Riordan-like formula discovered by the first author. As a consequence we find a connection between his formula and Jacobi’s triple product identity. We then give a combinatorial analog of Jacobi’s triple product identity by showing that a finite sum can be interpreted as a generating function of weighted Schröder paths, so that the triple product identity is recovered by taking the limit. This can be stated in terms of some continued fractions called T -fractions, whose important property is the fact that they satisfy some functional equation. We show that this result permits to explain and generalize some Touchard-Riordan-like formulas appearing in enumerative problems. Résumé. Nous donnons une preuve combinatoire d’une formule à la Touchard-Riordan due au premier auteur. En conséquence, nous faisons apparaı̂tre un lien entre cette formule et l’identité du produit triple de Jacobi. Nous donnons un analogue combinatoire à l’identité du produit triple en montrant qu’une somme finie peut être interprétée comme fonction génératrice de chemins de Schröder pondérés, de sorte que l’identité du produit triple s’obtient en passant à la limite. Ceci peut être énoncé en termes de fractions continues appelées T -fractions, dont la propriété importante est le fait qu’elle satisfont certaines équations fonctionnelles. Nous montrons que ce résultat permet d’expliquer et généraliser certaines formules à la Touchard-Riordan apparaissant dans des problèmes d’énumération.
منابع مشابه
Short Proofs of Summation and Transformation Formulas for Basic Hypergeometric Series
We show that several terminating summation and transformation formulas for basic hypergeometric series can be proved in a straigntforward way. Along the same line, new finite forms of Jacobi’s triple product identity and Watson’s quintuple product identity are also proved.
متن کاملAbel–rothe Type Generalizations of Jacobi’s Triple Product Identity
Abstract. Using a simple classical method we derive bilateral series identities from terminating ones. In particular, we show how to deduce Ramanujan’s 1ψ1 summation from the q-Pfaff–Saalschütz summation. Further, we apply the same method to our previous q-Abel–Rothe summation to obtain, for the first time, Abel–Rothe type generalizations of Jacobi’s triple product identity. We also give some r...
متن کاملCrossings, Motzkin paths and moments
Kasraoui, Stanton and Zeng, and Kim, Stanton and Zeng introduced certain q-analogues of Laguerre and Charlier polynomials. The moments of these orthogonal polynomials have combinatorial models in terms of crossings in permutations and set partitions. The aim of this article is to prove simple formulas for the moments of the q-Laguerre and the q-Charlier polynomials, in the style of the Touchard...
متن کاملNew Polynomial Analogues of Jacobi’s Triple Product and Lebesgue’s Identities
In a recent paper by the authors, a bounded version of Göllnitz's (big) partition theorem was established. Here we show among other things how this theorem leads to nontrivial new polynomial analogues of certain fundamental identities of Jacobi and Lebesgue. We also derive a two parameter extension of Jacobi's famous triple product identity.
متن کاملInfinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions
In this paper we derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi’s 4 and 8 squares identities to 4n2 or 4n(n + 1) squares, respectively, without using cusp forms. In fact, we similarly generalize to infinite families all of Jacobi’s explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011